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Abstract 

India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the 

dry period before the onset of the summer monsoon, suggesting that local land-atmosphere 

feedbacks involving desiccated soils and vegetation might have played a role in driving the heat 

extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface 

models, we find that the heat wave included two distinct peaks: one in late May, and a second in 

early June. During the first peak we find that clear skies led to a positive net radiation anomaly at 

the surface, but there is no significant sensible heat flux anomaly within the core of the heat 

wave affected region. By the time of the second peak, however, soil moisture had dropped to 

anomalously low levels in the core heat wave region, net surface radiation was anomalously 

high, and a significant positive sensible heat flux anomaly developed. This led to a substantial 

local forcing on air temperature that contributed to the intensity of the event. The analysis 

indicates that the highly agricultural landscape of North and Central India can reinforce heat 

extremes under dry conditions.  
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 Introduction 

Uncomfortably high temperatures are an expected condition in India during the weeks prior to 

onset of the monsoon. The climatological average temperature for the month of May is above 

35⁰C in large parts of north and Central India, making it the hottest month in the calendar over 

North India. Nevertheless, some years stand out for their extreme heat, including 19981, 20032, 

20053 and both 2015 and 2016. The heat wave of 2015 (HW15) received significant coverage in 

the international media, as it had dramatic impacts on large population centers and has been 

blamed for more than 2500  human deaths4.  

The impacts of recent heat waves are of particular concern since these events are expected to 

become more frequent, intense, and of longer duration  for much of India over the course of the 

21st century5. The fact that extreme heat events tend to come just before the onset of monsoon 

rains also raises an interesting question about land-atmosphere interactions. This is a dry time of 

year in much of India, and both the approach of summer solstice and the presence of typically 

clear skies lead to high downwelling solar radiation at the surface. This suggests that extreme 

heat waves could, in part, be a product of local heating through enhanced sensible heat flux from 

a hot and dry  surface. A significant contribution of local heating to the onset and/or 

intensification of heat waves has been found for major heat events in Europe in 20036,7  and in 

Russia in 20108 , among others. Impacts of depleted soil moisture on the occurence of heat wave 

during  1961-2013 are also found over India9. Anecdotally, extreme heat events appear to be 

associated with late monsoon rains, inadequate pre-monsoon rains, or low rain in neighboring 

regions leading to advection of dry heat into India10. Longer (duration) and warmer heat waves 

over India are found to be linked with El Niño years as well11. 
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Here we perform a detailed investigation of HW15, that is designed to: (1) define the temporal 

and spatial pattern of the event, since media reports of impacts do not necessarily align with the 

actual climate anomaly; and (2) characterize the role that surface conditions—in particular, soil 

moisture anomaly and associated sensible heat flux anomalies play in the onset and evolution of 

the event. This diagnostic analysis of land-atmosphere processes complements recent studies of 

the predictability of HW154 and its connection to large scale atmospheric circulations10.  

 Results and Discussion  

 Description of the heat wave 

We define the temporal and spatial domain of HW15 in terms of anomaly thresholds  in the 

rolling seven day (one week) average surface air temperature (SAT). This is just one of many 

ways to define a heat wave event. We choose this approach  because the prolonged persistence of 

elevated temperature was a defining feature of HW15 . Anomalies were calculated on a gridcell 

by gridcell basis relative to 1980-2015 climatology using MERRA-Land (MLD) SAT estimates 

(Fig. 1).  Very high weekly SAT anomalies are  apparent in both late May (May 21st-22nd to 

May 27th-28th) and early June (June 4th-5th to June 10th-11th) (Fig. 1). On this basis, we define 

the Core of the Heat Wave (COHW) region for both the late May (COHWMay)  and early June 

(COHWJune ) peaks as the region within India in which the weekly SAT anomaly exceeded 3°C.  

Both COHW are located in the eastern half of India.  However, COHWMay is large and extends 

over south India, while COHWJune is smaller and is focused in the north of the Gangetic Plain. A 

statistically-defined threshold, where pixels meeting or exceeding the 90th percentile threshold 

weekly SAT for rolling seven day average SAT are defined as being in heat wave status yielded 

similar results for the late May peak (See Supplementary Fig. S1 online). The 3°C absolute 
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anomaly threshold was slightly more spatially coherent than the 90th percentile threshold and 

was used as the basis for further analysis.  

Synoptic weather station records which are geographically located in and around COHWMay are 

shown in Fig. 2 and Fig. S2. The box and whisker diagram (Fig. S2) shows the comparison 

between daily SAT from observations and from MLD for a long-term record. The match 

between MLD and stations is not perfect, but the general pattern holds and correlation between 

MLD and station SAT is high for all  selected stations  (Supplementary Tables S1 and S2).  

Figure 2 clearly show the consistent time domain from late May and early June in 2015, when 

very high SAT is observed at these stations.  The two northernmost stations (Goya and 

Daltonganj) have highest temperature in June while the others peak in late May. Consequently, 

some stations show that there are  two distinct temperature peaks: the first in late May, and the 

second in early June. These two peaks are separated by a period of elevated but not extreme 

temperatures. The two peaks evident in station data are also present in MLD SAT estimates (Fig. 

2; dashed line). Notably, in terms of both absolute magnitude and deviation from the mean, the 

week of May 21st-22nd to May 27th-28th stands out above any warm conditions experienced 

earlier in the month (Fig. 1 and Fig. 2). This is relevant because the monthly temperature 

anomaly (See Supplementary Fig. S3 online) includes hotspots in both the East and West of the 

country, but weekly analysis shows that only the eastern hotspot is the product of a focused heat 

wave event. A coherent departure reemerges in the week of June 4th-5th to June 10th-11th 

during the secondary HW15 peak.  

Local heating anomaly 

One possible explanation for the severity of HW15, and one that was noted in news reports at the 

time (https://en.wikipedia.org/wiki/2015_Indian_heat_wave), is that the heat was associated with 
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poor rainfall conditions. Low rainfall conditions could lead to enhanced surface heat flux both 

due to positive radiative heating anomalies (increased upwelling surface longwave radiation) and 

increases in sensible heat flux (SH) resulting from high net surface radiation (Rnet) under clear 

sky, sunny conditions and/or reduced soil moisture (SM) leading to lower evaporative fraction 

(EF). We find that the late May heat wave peak corresponded to a period of anomalously low 

rainfall and anomalously high surface net shortwave radiation (SWnet) across much of India (Fig. 

3a,b). This was associated with an anomalously low net  longwave radiation (LWnet) at the 

surface (Fig. 3c), which  indicates enhanced radiative warming of the lower atmosphere by the 

surface.  

The SM anomaly during this period, however, is mixed: southern portions of COHWMay show 

dry conditions (negative anomaly), but to the north soils are relatively wet (positive anomaly) 

(Fig. 3d). Following this SM pattern, the SH anomaly is also spatially variable, with a region of 

anomalously enhanced SH flux in the south of COHWMay that is larger than 30 Wm-2 in places, 

but areas of negative SH anomaly of similar magnitude to the north (Fig. 3e). Averaged across 

COHWMay, we see that the May heat wave peaked during a period when the average SM 

anomaly was still positive (2.13mm/day) and average SH anomaly was negligible (8 Wm-2 ) 

(Fig. 4 and table 1). Only the SWnet  anomaly was consistently positive  and LWnet  was 

consistently negative during this period, with average surface  SWnet and LWnet  anomalies on the 

order of 20.6 Wm-2 and  -18.2 Wm-2(table 1). 

In contrast to the May peak of the heat wave, the June peak occurred after the intense heat of 

May had dried the surface and as dry atmospheric conditions continued to prevail over northern 

India (Fig. 5a) where COHWJune  is centered and localised. Therefore, the COHWJune  is spatially 

much smaller than COHWMay. Part of  COHWMay  (mainly the southern part of India) was spared 
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from the June phase of the  heat wave due to  anomalously high rainfall over some areas (Fig. 

5a); hence both  Rnet local forcing and SH local forcing were absent from the southern part of 

India. This second heat wave peak is characterized by negative SM anomalies across most of the 

heat-affected region (Fig. 5d) and enhanced SH anomaly across COHWJune (Fig. 5e).  For this 

heat event, then, both the Rnet local forcing and SH local forcing were active (table 1): the surface 

LWnet   anomaly was   -20.5 W m-2 and the SH anomaly was 26.6 W m-2, across COHWJune 

(Table 1).  The contrasts between the May and June peaks indicate that the May event was 

primarily a product of large scale forcings, including clear sky conditions that led to a local 

radiation feedback during the heat wave. The June peak, in contrast, emerged during a period of 

dry surface conditions and was characterized by large SH anomaly throughout the event.  

 

The sequencing of these anomalies in MLD and in the LSM forced with MLD meteorology is 

confirmed by independent satellite estimates of sensible heat flux from ALEXI (Fig. 6) and LST  

(See Supplementary Fig. S4 online).  Diagnostic modeling approaches such as ALEXI provide 

an estimate of energy balance elements; e.g. SH and LH fluxes without a priori specification of 

moisture inputs. ALEXI incorporates satellite observations into a model (see methodology for 

details) and provides an estimate which is a proxy for ground-truth. Atmospheric interference, 

particularly due to clouds, can  lead to missing data and some noise in ALEXI. Persistent cloud-

contamination results in missing data points in ALEXI, particularly during the rainy season. 

Hence, this diagnostic approach may not provide a smooth anomaly plot as in Fig. 3 and 5. But 

Fig. 6 suggests that the anomalously high SH flux pattern spreads spatially in the weeks leading 

up to the heat wave, and this spread is geographically consistent with the COHW. 
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The local heating analysis is summarized in Table 1. In the late-May peak, clear skies led to 

enhanced longwave radiation that served to reinforce a heat wave that was primarily a product of 

large scale conditions. In June, dry conditions caused a substantial positive SH anomaly to 

emerge, resulting in a significant forcing on air temperature. This can be considered in terms of 

total heating potential over the course of each heat wave peak. If we take the extreme case of an 

air parcel that stays within the COHW and the planetary boundary layer for several days leading 

up to each heat wave peak then we can estimate the contribution of SH anomaly to the 

temperature anomaly of that parcel. This is an extreme end member. In fact, winds were light 

(Table 1) but of generally consistent direction (result not shown here), suggesting COHW 

residence times on the order of ~1 day for a parcel that transverses the core of the heat wave in 

the direction of prevailing winds. But the end member  is instructive when comparing events. In 

the four days leading up to the high daily temperature anomaly in the late May peak on May 

21st-22nd, the SAT anomaly rose by 4.5°C, while the integrated SH anomaly would only create 

a heating on the order of 0.2°C for the theoretical air parcel that stays within COHWMay for the 

full four days. For the June peak, in contrast, SAT anomaly rose by only 2.5°C on June 9th-10th 

relative to the preceding period, but the integrated SH anomaly could warm a stagnant air parcel 

by ~4°C. This points to the importance of the local energy partitioning anomaly due to soil 

moisture deficit during the June heat event. 

Conclusions 

In this paper, we examined the spatial and temporal pattern of the 2015 India heat wave and 

quantified the potential for land surface conditions to contribute to the heat extreme. We have 

employed a suite of models and datasets to the analysis, including meteorological station 
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observations, reanalysis output (primarily MLD), South Asia LDAS, a satellite based diagnostic 

model (ALEXI), and standard remote sensing products (MODIS).  

We find that the heat wave struck India in two phases: first in late May and again in early June. 

Both phases were associated with low rainfall and unusually clear skies, leading to a positive 

anomaly in  Rnet at the surface and enhanced local heating from the land surface.  This result 

complements the study10 which identified clear skies associated with large-scale atmospheric 

conditions as a driver of HW15. During the May phase of the heat wave, persistent dry 

atmospheric conditions and elevated incoming SW radiation cause a soil moisture deficit to 

develop. Thus, a soil moisture mediated energy partitioning feedback on temperature appears to 

lag the May heat wave peak but lead the temperature anomaly peak in June in the center of the 

heat wave. As a result, enhanced sensible heat flux associated with a dry surface contributed 

much more significantly to the June peak than it did to the late May peak. This conclusion is 

supported by satellite derived temperature and heat flux estimates, which show anomalously 

warm land surface temperature (MODIS) and anomalously high sensible heat flux (ALEXI) 

during the peak of heat wave.  

These results demonstrate the potential for both large scale atmospheric dynamics and local 

feedbacks to contribute to pre-monsoon heat waves in India. For  HW15, the relative 

contribution of each changed over the course of the event as land surface conditions evolved, 

with local heating becoming increasingly important in the second phase of the heat wave. As 

extreme heat is of increasing concern in India, and as the impact of climate change on the onset 

of monsoon rains is an area of significant uncertainty, understanding, monitoring, and, where 

possible, managing the impact that land surface conditions have on the development of extreme 

heat events should receive continued attention.  
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Data and Methodology 

HW15 is studied using a combination of atmospheric reanalysis data, land surface model 

simulations, and satellite-derived observations. We use surface state and near-surface 

meteorology fields drawn from the MERRA (Modern Era Retrospective Analysis for Research 

and Applications) -Land (MLD) data product12. MLD improves MERRA’s representation of the 

land surface in part by merging a gauge-based precipitation product from NOAA CPC with 

MERRA precipitation. For this study we make use of daily surface air temperature (SAT), total 

precipitation, net shortwave radiation and net longwave radiation from MLD. MLD estimates of 

SAT was compared to those of the ERA Interim reanalysis13  and were found to be similar (Fig. 

S3). MLD temperature estimates are used to define the Core of the Heat Wave (COHW), which 

is used as the basis for all area averaged calculations presented in the results section. We do note 

that there is heterogeneity within the COHW due to surface properties and local weather. 

To address the biases present in the reananlysis product14, we complement the reanalysis dataset 

by analyzing in situ meteorological records from the National Climate Data Center archive 

WMO GSOD network, obtained from the NOAA National Climate Data Center 

(https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily). In addition, we perform our own offline land 

surface model simulations to study details of land surface conditions up to and during HW15. A 

36 year long simulation (1980-2015) was performed using Noah 3.3 land surface model15  under 

the South Asia Land Data Assimilation System (South Asia LDAS) framework 16. The 

simulations were performed at 10km resolution, had a 40 year spin-up, used MLD as 

meteorological forcing, used satellite-derived land cover and vegetation parameters, and 

accounted for irrigation. We use daily soil moisture and sensible heat flux  outputs from the 

LDAS.  
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Finally, several satellite-derived datasets were used to provide an independent view of HW15. 

Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 

fields at 5km horizontal resolution were used as a complementary temperature dataset 

(MOD11C2)17. The Atmosphere-Land Exchange Inverse Model (ALEXI)18-21  estimates of 

surface sensible heat flux are also applied.  ALEXI derives surface turbulent heat flux estimates 

on the basis of a two-source land surface model coupled with a one-dimensional atmospheric  

boundary layer model. The version of ALEXI used in this study applies time-differential 

measurements of morning land surface temperature rise to diagnose the partitioning of available 

energy into sensible, latent, and ground heat flux components21. 
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Figure Captions: 

Figure 1. Weekly anomaly of SAT (°C)  for the weeks of  (a) April 30th-May1st to May 6th-7th,  

(b) May 7th-8th to May 13th-14th , (c) May 14th-15th  to  May 20th-21st , (d) May 21st-22nd to May 

27th-28th , (e) May 28th-29th  to June 3rd-4th and (f) June 4th-5th  to June 10th-11th in 2015 based on 

the weekly climatology of 1980-2015. Station locations (G=Goya, Da=Daltonganj, 

Jh=Jharsuguda, J=Jabalpur, R=Ramgundam and B=Begumpet Airport)  are  marked in Figure 

1d. Any pixel with elevation above 1000m  is  not shown (white colored region). Data 

visualizations produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, 

Colorado).  

Figure 2. Daily SAT (°C) during May and June in 2015  for station observations (solid line) and 

MLD output (dashed line). Data visualizations produced using IDL [8.4] (Exelis Visual 

Information Solutions, Boulder, Colorado).  

Figure 3. Anomalies of (a) total precipitation, (b) Net SW, (c) Net LW, (d) total profile soil 

moisture  and (e) SH for the week of  May 21st-22nd  to  May 27th-28th  in 2015 based on the 

weekly climatology of 1980-2015. Any pixel with elevation above 1000m is not shown (white 

colored region). Data visualizations produced using IDL [8.4] (Exelis Visual Information 

Solutions, Boulder, Colorado).  

Figure 4: Average daily anomaly based on 1980-2015 daily climatology for a) COHWMay and for 

(b) COHWJune over Indian landmasses. The y axis scale on the right indicates SAT  (°C, red 

line). The y axis on the left indicates sensible heat flux (W m-2, orange line), net SW radiation 

(W m-2, blue line), net LW radiation (W m-2, black line) and  total profile soil moisture (mm, 
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green line). Net LW radiation has been plotted with the reversed sign.  Grey color shows the 

anomalously positive SAT during two extreme heat events during May and June. Data 

visualizations produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, 

Colorado).  

Figure 5.  As in Figure 3, but for the week of June 4th-5th to June 10th-11th  in 2015. Data 

visualizations produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, 

Colorado).  

Figure 6. Sensible heat flux anomaly for the weeks of (a) May 7th-13th ,  (b) May 14th-20th  and 

(c) May 28th-June 4th  from ALEXI (see text for details of the dataset) based on the weekly 

climatology of  2003-2015. The anomaly plot for the weeks of May 21st-27th and June 5th-11th are 

not shown due to the large extent of missing data resulting from cloud-contamination in satellite 

inputs to ALEXI. ALEXI provides 7-day composite data where calendar dates for each of the 7-

day periods are pre-defined. Any pixel with elevation above 1000m is not shown (white colored 

region). White color also shows pixel with missing values.  Data visualizations produced using 

IDL [8.4] (Exelis Visual Information Solutions, Boulder, Colorado).  
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Table Caption: 

Table 1: Average anomaly of the variables over COHW 
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Figure 1. Weekly anomaly of SAT (°C)  for the weeks of  (a) April 30th-May1st to May 6th-7th,  

(b) May 7th-8th to May 13th-14th , (c) May 14th-15th to May 20th-21st , (d) May 21st-22nd to May 

27th-28th , (e) May 28th-29th to June 3rd-4th and (f) June 4th-5th  to June 10th-11th in 2015 based on 

the weekly climatology of 1980-2015 . Station locations (G=Goya, Da=Daltonganj, 

Jh=Jharsuguda, J=Jabalpur, R=Ramgundam and B=Begumpet Airport)  are marked in Figure 1d. 

Any pixel with elevation above 1000m is not shown (white colored region). Data visualizations 

produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, Colorado).  
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Figure 2. Daily SAT (°C) during May and June in 2015  for station observations (solid line) and 

MLD output (dashed line). Data visualizations produced using IDL [8.4] (Exelis Visual 

Information Solutions, Boulder, Colorado).  
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Figure 3. Anomalies of (a) total precipitation, (b) Net SW, (c) Net LW, (d) total profile soil 

moisture  and (e) SH for the week of  May 21st-22nd  to  May 27th-28th  in 2015 based on the 

weekly climatology of 1980-2015. Any pixel with elevation above 1000m is not shown (white 

colored region). Data visualizations produced using IDL [8.4] (Exelis Visual Information 

Solutions, Boulder, Colorado).  
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Figure 4: Average daily anomaly based on 1980-2015 daily climatology for a) COHWMay and for 

(b) COHWJune over Indian landmasses. The y axis scale on the right indicates SAT  (°C, red 

line). The y axis on the left indicates sensible heat flux (W/m2, orange line), net SW radiation (W 

m-2, blue line), net LW radiation (W m-2, black line) and  total profile soil moisture (mm, green 

line). Net LW radiation has been plotted with the reversed sign.  Grey color shows the 

anomalously positive SAT during two extreme heat events during May and June. Data 

visualizations produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, 

Colorado).  
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Figure 5.  As in Figure 3, but for the week of June 4th-5th to June 10th-11th  in 2015. Data 

visualizations produced using IDL [8.4] (Exelis Visual Information Solutions, Boulder, 

Colorado).  
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Figure 6. Sensible heat flux anomaly for the weeks of (a) May 7th-13th ,  (b) May 14th-20th  and 

(c) May 28th-June 4th  from ALEXI (see text for details of the dataset) based on the weekly 

climatology of  2003-2015. The anomaly plot for the weeks of May 21st-27th and June 5th-11th are 

not shown due to the large extent of missing data resulting from cloud-contamination in satellite 

inputs to ALEXI. ALEXI provides 7-day composite data where calendar dates for each of the 7-

day periods are pre-defined. Any pixel with elevation above 1000m is not shown (white colored 

region). White color also shows pixel with missing values.  Data visualizations produced using 

IDL [8.4] (Exelis Visual Information Solutions, Boulder, Colorado).  
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Table 1: Average anomaly of the variables over COHW 

  Average for the period of May 
21st‐22nd to May 27th‐28th in 

2015 over COHWMay 

Average for the period of June 
4th‐5th to 10th‐11th in 2015 

over COHWJune 

SAT' 
 

3.5 °C  3.32°C 

Net SW'  20.6 W/m2  30.1W/m2 

Net LW'  ‐18.2  W/m2  ‐20.5W/m2 

Rnet'  2.4 W/m2  9.56 W/m2 

 
SM' 

 
2.13 mm/day  ‐7.8mm/day 

SH'  8 W/m2  26.6 W/m2 

Evaporative Fraction '  ‐0.08  ‐0.18 

Potential  SH  contribution  to 

heating 

0.27 °C/day  0.9°C/day 

Mean near‐surface wind speed  4.9 m/sec  4.5 m/sec 

 

 

 

 

 


